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Let 11' be a weight function defined on (-1, 1) and let Pn(w, x) =
Yn(w) x n + ... denote the corresponding sequence of orthonormal poly­
nomials, that is, Yn(w) > 0 and

f PnCw, t) Pm(w, t) wet) dt = Onm .
-1

Further, let 1 > XlnCW) > x 2nCw) > ... > xnn(w) > -1 be the zeros of
Pn(11', x). For a continuous function I on [-1, 1], the Lagrange interpolation
polynomial L n( 11', j) is defined to be the unique algebraic polynomial ofdegree
at most n - 1 coinciding with I at the nodes Xkn(W) (k = 1,2,... , n). The
theory of Lagrange interpolation has a very long history and without going
into details we mention that the mere continuity of I does not guarantee
uniform or even pointwise convergence of Ln(w,j) as n -+ 00. For this
reason it is more practical to consider the convergence of LnCw,j) in weighted
L1' spaces, at least when we are interested in convergence of Ln(w,j) for
every continuous function f In order to formulate the problem we are
dealing with more precisely, let us consider the space of continuous functions
on [-1, 1] in two examples. One of them is C with the usual maximum norm
and the other is Cv1' where the distance between two functions I and g is
defined by

[I
I ]1/maX(l,1')

d(/, g)v.v = IJ(t) - g(t)I1' vet) dt ,
-1

where 0 < P < 00 and v is a nonnegative, not almost everywhere vanishing,
integrable function. For P ~ 1, of course, Cv1' is a normed space and we can
write d(f, O)v,p = 1l/llv.v. When v = 1 we simply write CP, 11/111' , etc.

Erdos and Turlin [6] have shown that for every IE C the polynomials
Ln(w,j) converge to/in Cw2 and consequently also in CwP with 0 < P < 2.
It follows from this result also that Ln(w,j) converges to I in every CvP if
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o< P < 2 and vPj(2-P)W-pjl2-p) is integrable. For other values of p, Erdos
and Feldheim [5] and Marcinkiewicz [13] have proved that for the case of the
Tschebisev weight function W(-lj2.-1/2), where

(n: > -1, fJ > -1),

Ln(Wl-l/2.-1/2),f) converges in every CwP with p > O. On the other hand
Feldheim [9] has proved that there exists a function f E C such that
LiWll/2.1/2), f) does not converge to f in C~(1/2.1/2) . For this reason Erdos
and Turan raised the question: For a given w to find all the values p = pew)
for which Ln(w, f) converges to f in CwP for every f E C. This problem was
later modified by Freud, who in his book [11] suggested the investigation of
convergence of Liw,f) in some CvP spaces where v does not necessarily
coincide with w.1 Let us remark that Erdos and Feldheim's and
Marcinkiewicz's results obviously imply that the Lagrange interpolation taken
at the Tschebisev abscissas converges in every CvP ifp > 0 and v· is integrable
with some E > 1.

The first general result giving a partial answer to the problem of Erdos
and Turan was obtained by Askey [1,2], who, considering the case of the
Jacobi weight functions w(",Il) for many (but not every) values of n: and fJ,
managed to prove convergence and divergence theorems. In particular, he
proved that Ln(W(",lll, f) converges to f in C::"(~.f3) when n:, fJ ~ - t for every
fECif

. \ 4(n: + 1) 4(fJ + 1) I
o < P < mm I 2n: + 1 ' 2fJ + 1

and if

I 4(n:+ 1) 4(fJ+l) I
P > max I 2n: + 1 ' 2fJ + 1

then one can find a continuous f such that LnCw(",.Bl, f) diverges in C::"(~.f3) •
In [1], Askey also formulated a conjecture concerning Freud's problem for
w = w(,,·Il) and v = w(a,b).

The aim of this paper is to prove Askey's conjecture in a more general
settlement, and with this, to solve almost completely Erdos and Turan's
problem for the case of weight functions which are similar, in the sense
described later, to the Jacobi weight functions. The words "almost com­
pletely" mean that for such weight functions w we can find a number
Po = PoCw) such that Ln(w,f) converges to f in every CwP if 0 < P < Po
and there exists a continuous f = f'P such that Ln(w,f) diverges in CwP if
P > Po· We are not able to say anything about the case when p = Po .

1 The case when vex) == 1 was considered earlier by Turan [161 and Erdos [41.



LAGRANGE INTERPOLATION 365

Before the main results let us introduce some notations and mention some
results which will be needed later. Every constant appearing in the estimates
will be denoted by A, and they are nonnegative and take different values in
different estimates. We write an ,...." bn if for every n the ratio anjbn is between
two positive constants. The notations a(x)""'" b(x), an(x)""'" bn(x) have
similar meanings. We say that W is a generalized Jacobi weight and write
w R:::! Wk<.!ll if w(x) ,...." W(~·I3)(X), wjw(~·m E C, and the modulus of continuity
weD) of wjW(~,I3) satisfies the condition

r (w(D)jD) d8 < 00.
o

P n denotes the set of algebraic polynomials with real coefficients of degree
at most n. The Christoffel functions An(w) corresponding to the weight ware
defined as

An(w, x) = min n-2(x) Jl n 2(t) wet) dt,
ITEP,,_l -1
IT(x) ''0

or-what is the same-

AnCw,X) = ['I.1pk2(W,X)]-I.
k~O

It is also well known that

(1)

(2)

(3)

(4)

where lkn(w) are the fundamental polynomials of Lagrange interpolation at
the zeros of Pn(w), that is,

I ( ) _ Pn(w, x)
kn W, X - Pn'(w, Xkn(W»(x - Xkn(W» ,

or in another form,

I ( ) Yn-l(W) \ ( (» ( (» Pn(w, x)kn W, X = () I\n W, Xkn W Pn-l W, Xkn W ( ).Yn W X - Xkn W

By the Gauss-Jacobi mechanical quadrature formula the identity

rnet) wet) dt = ±n(Xkn) AnCxkn)
-1 k-l

(5)

(6)

holds for every n E P2n-l , where Xkn == Xkn(W) and An(xkn) = An(w, Xkn(W»,
Between the zeros ofPn(w, x) and the Christoffel function An(w, x) there exist
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strong connections which are called the Markov-Stieltjes inequalities. They
are

I An(Xkn) < (W wet) dt < I An(Xkn).
k~,+1 -1 k=i

(7)

Concerning (1)-(7) see, e.g., [11]. From the proof of (7) given in [11] it is not
hard to see that we also have

I (l ± Xkn) An(Xkn) < (W (l ± t) wet) dt < i (1 ± Xkn) An(Xkn). (8)
k=i+1 -1 k=i

For fE C we shall denote by Siw,j) the nth partial sum of the Fourier
series of f by the polynomials heW). Finally, for 1 < p < r:J:) we mean by
II L n(w)lIv.oo.:p and II Sn(w)llv.oo.:p the (oo,p) norms of the linear operators Ln(w)
and Sn(w) considered as mappings from C into Cvp.

The main result of this paper is the following

THEOREM 1. Let w ;:::j w(ex.J3) and v = uw(a.bl, where u' is integrable with

some E > 1. For every fE C we have d(Ln(w,j),j)v.:p --+ °when n --+ 00

if
(i) max(o:, (3) < -~-, a = 0, b = 0, p > 0.

(ii) mineo:, (3) > -l-, u is bounded in some neighborhoods of -1 and 1,
a > (20: - 3)/4, b > (2(3 - 3)/4, and

. \ 4(a + 1) 4(b + 1) 1°< p < mm I 20: + 1 ' 2(3 + I j'

(iii) 0: < -~- < (3, u is bounded in a neighborhood of -1, a = 0,
b > (2(3 - 3)/4, and

°< p < 4(b + 1)/(2(3 + I).

(iv) (3 < -l- < o:,uisboundedinaneighborhoodofl,a > (20: - 3)/4,
b=Oand

°< p < 4(a + 1)/(20: + 1).

In order to show that the conditions imposed on p and v are close to the
necessary one we shall also prove

THEOREM 2. (i) Let w ~ w(ex./l) and v = uw(a.b). Suppose that Ln(w,f) -Moof
in Cv:P for every f E C. If ex > - 1- and u-1 is bounded in a neighborhood of 1,
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then necessarily P ~ 4(a + 1)/(20: + 1) and similarly if f1 > -t and u-1 is
bounded in a neighborhood of -1, then P ~ 4(b + 1)/(2f1 + 1).

(ii) For every weight w there exist a function fEe and an integrable v
such that for every p > 0 Ln(w,f) does not converge tofin Cvp.

To prove these two theorems, first we must investigate some properties of
polynomials Pn(w) with w ,....., wla,S). Theorems 3 and 4 below may be of some
interest.

LEMMA 1. If w ,....., wId) then

1 ( 1)2a+l( 1)213+1An(W, x) ,....., 11 (1 - X)1/2 + 11 (1 + x)l/2 + 11

for I x I ~ 1.

For the case w = w(a,1i) this was proved in [14] and for w ,....., w(a,,,) it follows
from the well-known comparison principle (see, e.g., [II]).

LEMMA 2. Let PEPn . Then

max IPI(x) ((1 - X)1/2 + !)Y+l((1 + X)1/2 + !)~+1 I
Ix 1,,;;:1 11 11

I 1 y 1 ~ I~ An max P(x) ((1 - x)l/2 + -) (C 1 + X)I/2 + -)
Ixl";;:! n 11

for every real y, D,

max I P(x) wl (2a+!)/2 p ,(213+0/2P)(x)\ ~ An1/P!1 P Il
w

(a,13),m
Ixl";;:!-(T/n2 ) I

for If' > 0, 0: > -1, f1 > -1, P ~ 1 and

for 0: > -1, f1 > -1, P ~ 1.

Lemma 2 was proved by Khalilova [12].

THEOREM 3. Let Xkn(W) = cos B"n(w) for k = 0, 1,... , n + 1, where
xon(w) = 1 and xn+1 ,nCw) = -l./fw ,....., w(a,1i) then B"+l.n(w) - Bkn(w) ,....., n-1

for k = 0, 1,... , n,

Proof By a theorem of Erdos and Tunin [8] it is enough to consider such
values of k for which I Xkn(w) I ~ t. We shall deal only with the case
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! ::::;; Xkn(W) ::::;; 1; the second one can be treated similarly. The proof will
consist of five parts.

1. Oln(W) = O(n-1). Suppose 0ln<W) > n-1• Then by the Markov­
Stieltjes inequalities

that is, by Lemma 1,

A(l/n) w(x1n(w»(1 - x~n(w»1/2 ): r wet) dt
'''In(W)

and since x1n(w) ): t obviously for big values of n we obtain

2. [02nCW)]-1 = O(n). Using the Markov-Stieltjes inequalities we get

Then by part 1 and Lemma 1

3. [OlnCW)]-l = O(n). We have by the Guass-Jacobi mechanical qua­
drature formula that for every m ): n

(1 - x1n<w» An(X1n(w» = r (1 - t) l~n(w, t) wet) dt
-1

m

= L (l - Xkm(W» l~n(w, Xkm(W» Am(Xkm(W»r
k~l

that is,

m

): (1 - X2m(W» L l;n(w, Wkm(W» Am(Xkm(W»
k=l

- (1 - X2m(W» l;n(W, Xlm(W» Am(X1m(W»

= (1 - X2m(W» ,\n<x1n(w» [1 - l:~~~~:~~» Am(Xlm(W»).



LAGRANGE INTERPOLATION

From (3) we get

( . ( )) [ Am(X1mtW)) ]1 - X1n W) ~ (1 - X2m W 1 - A
n
(X

1m
(w)) .

369

Here, if we put m = qn, where q is big but fixed, and make use of part 1
and Lemma 1 we obtain

for n big enough.

4. Bk+l.nCw) - Bkn(w) = O(n-1)for 0 < BknCw) :'( 71'/3. Since (1 - t)w(t) "-J

t(1 - t2)et+l for 1/10 :'( t :'( 1, we obtain from (8)

and by Lemma 1 and part 1

[sin Bk+l.n(W)]2etH - [sin Bkn(w)]2etH

:'( (A/n){[sin Bkn(w)]2et+3 + [sin Bk+l.n(W)]2et+3}.

Consequently

A Iu - v [ [sin2et+3 u + sin2et
+3 vJ (1)B 11' - B w :'( - su .. . = 0 - .k+l.n() knC) n P [ sm2etH u - sm2etH v [ n

O<U.V<31Tf4

5. [Bk+l.n(w) - Bkn(w)]-l = O(n)for 0 < Bkn(w) :'( 71'/3. First we estimate
(d/dx) lkn(w, x) for Xk+l.n(W):'( X ~ Xkn(W). Since by (3) l:n(w, x) :'(
An(Xkn(W)) A;l(W, x) we obtain from Lemma 1

(
1)-2et-1( 1)-211-1

l~n(w, x) ~ AAn(Xkn(W))n (1 - X)1/2 + n (1 + X)1/2 + n
and by Lemma 2

that is, by parts 1 and 4 and Lemma 1,

max [(d/dx) l~n(w, x)1 = O(n . (1 - X~nCW))1/2).
Xk+l ...(W)<X';;;Xk"(W)

Finally, we observe that 1 = Ik2,.(w, XknCW)) - l;nCw, Xk+l.n(W)) = (Xkn(W) ­
Xk+l.n(w»(d/dx) l;n(w, x*), where x* E [Xk+l.n(W), XknCW)].
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Theorem 3 was already known for the case 10:1 = I fJ I' = t. For 0: =
fJ = -t it was proved by Erdos and Tunin [7] and for the other combinations
of 0:, fJ with I 0: I = I fJ I = t, by Freud [1O}. In the following we shall need
one important consequence of this theorem which follows immediately from
parts I and 4:

COROLLARY. If 11' r-..J 11'(<>,/3) then () r-..J ()k,,(W) for ()k,,(W) ~ () ~ ()k+l,nCW)
(k = 1,2,... , n - I).

THEOREM 4. Let I ~ p < 00 and let P be a polynomial of degree m ~

const n. If 11' r-..J 11'(<>,/3) then

t I P(Xk"(W»)IP A,,(XknCW» ~ A r I P(t)IP wet) dt,
k~ ~

Proof By Lemmas I and 2 and Theorem 3,

I P(Xk,,(W»jP AnCXk"(W» ~ A r I P(t)IP wet) dt
-1

for k = 1,2,... , n and in particular for k = I and k = n. To estimate
L~:; I P(xk,,(w»IP A,,(Xk"(W» let us observe that

I P(xk,,(w»IP ~ ! P(t)IP + p (k-I,n(W) ! P(t)IP-1 I r(t)1 dt
"'k+I,n(W)

for Xk+l,"(W) ~ t ~ Xk_1,,,(W), k = 2,3,... , n - 1. After using the Markov­
Stieltjes inequalities we obtain

n~ 1

L I P(Xk,,(w»IP An(xknCw» ~ 2 J I P(t)IP wet) dt
k~ ~

,,-1 "'k-I,n(W)

+ p L An(Xk"(W» f I P(t)!P-11r(t)1 dt.
k~2 "'k+I,n(W)

It follows from Lemma I and Corollary that

for Xk+l,"(W) ~ t ~ Xk-l.n(W), k = 2,3,... , n - 1. This gives us

'f A,,(Xk"(W» fk-I,n(W) I P(t)[P-1 I r(t)! dt
k=2 "'k+I,n(W)

~ (Aln) II P [1::';1) II r IIw (<>+(p!2l.,B+(p!2»,p ,
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which together with Lemma 2 shows that

n~ I

L I P(Xkn(W))IP An(Xkn(W)) ~ A f I P(t)IP w(t) dt.
k~2 -I

371

For the case m = n - 1, W = w(<>,Il), a ~ -t, j3 ~ -t, and also for some
other values of a and j3, Theorem 4 was proved by Askey [1,2].

THEOREM 5. Ifw '" w(<>,Il) then II Ln(w)llv,cx>,p ~ A II Sn-l(w)llv,CX>,llfor every
1 ~p < 00 and v integrable on [-I, 1],

Proof By definition

II Ln(w)llv,cx>,p = sup sup r Ln(w,f, t) g(t) v(t) dt,
IIfllc~1 IIgll.,.~1 -I

where q = p/(p - 1). Now, since Liw,!) EPn _ l , we get

rLn(w,f, t) g(t) v(t) dt = rLn(w,f, t) Sn_I(W, gv/w, t) w(t) dt
-I -I

and by the Gauss-Jacobi mechanical quadrature formula and Theorem 4
we obtain

II Liw)llv,cx>.ll ~ A sup II Sn_I(W, gv/w)llw,1 .
IIgll.,q~1

But

II Sn_I(W, gv/w)l!w,1 = sup r Sn_I(W, gv/w, t) G(t) w(t) dt
IIGllc~1 -I

= sup rg(t) Sn_I(W, G, t) v(t) dt
IIGllc~1 -1

~ II g Ilv,q II Sn-l(w)llv,cx>,p ,

Proof of Theorem 1. Let first u == I and p ~ 1. Since Ln(w, P) = P
for every PEPn-I we have only to show that II Ln(w)llv,oo,p ~ A under
conditions (i)-(iv). But

II Ln(w)llv,oo,pt ~ A II Ln(w)llv,oo,P2

for I ~ PI < P2 ; consequently we must consider only large values ofp. Now
we make use of a result of Badkov [3] by which II Sn(w)llwla,bJ,p,ll is uniformly
bounded in n if p > I and

2(a + 1) a + I
a + I < p < «a + 1)/2) - min(!, (a + 1)/2) ,

2(b + I) b + I
(3 + I < p < «(3 + 1)/2) - min(!, «(3 + 1)/2) ,
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where 1/0 means 00. Since II S"(w)II,,.oo,2> :::;; A II S..(w)II",7>,l> we obtain from
Theorem 5 that II L"(w)II,,,oo,7> :::;; A under conditions (i)-(iv) if P ~ 1 and
u = 1. If 0 < P < 1 we simply use the fact that

d(f, g)",7> :::;; Ad(f, g)V.1 .

The case when u:jE 1 will be reduced to the case u = 1, which has already
been proved. So let u satisfy the conditions of the theorem. Then (i) is obvious.
Further, in condition (ii)

v :::;; A(uw(r+a,r+b) + w(a,b»)

for fixed r > O. Hence we can findnumbersp* = p*(e) and q* = q*(p) so
that

Having p* we can choose r = r(p*) so large that

Thus

lim sup d(L,,(w,f),f)v.7> :::;; A lim sup d(L,,(w,f),f)w1a,bl'7> '
n~oo n~oo

which proves (ii). Similarly, (iii) and (iv) follow from the fact that they are
true for u = 1.

LEMMA 3. Ifw ~ w(ex.ll) then

for k = 1,2,... , n.

Proof The proof strongly depends on the inequality

Ip,,(w, x)1 «I - X)1/2 + (l/n))ex+1/2«1 + X)1/2 + (l/n))Il+1/2 ~ A

(w ~ W1ex.lll , I x I ~ 1) (9)

proved by Badkov [3]. Without loss of generality suppose 0 ~ Xk"(W) < 1.
Let w1(x) = (I - x) w(x) and expand (I - x) P,,-1(W1 ,x) into a Fourier
series in the polynomials piw, x). It is not hard to see that

(l - x) P,,-1(W1 , x) = i r(1 - t) P"-1(W1 , t) heW, t) wet) dt heW, x)
k~,,-l -1
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and consequently

Since WI ~ w(a+l,Il) we obtain from Theorem 3 and (9)

By a well-known theorem of Szego (see [15, Theorem 12.7.1]) we have

I , Yn-l(Wl) - 1- _1_ fl 1 (1 -) dt 1- 21 / 21m ( ) - exp 2 og t (1 2)1/2 - •n->oo Yn-l W 7T -1 - t

Thus the inequality

is proved. On the other hand by (4) and (5)

Y;:(~~) An(Xkn(W)) Pn-l(W, xkn(w)) = Pn'{w, ~kn(W))

and using Lemma 1 and Theorem 3 we obtain

[W(Xkn(W)) P~_I(W, x kn{W))]-1

<Aw(a+l,Il+l)(Xk..{W)) [ Y;1~) r.n-2[Pn'(w, Xkn(W))]2,

Since Yn_l(W) < y..{w) we have only to show that

but this follows immediately from Lemma 2, Theorem 3, and (9).

LEMMA 4. Let W ~ w(a,IJ). Then

n

I Pn{w, x)1 < A L Ilkn{W, x)j
k~1

for I x I < 1. Furthermore,for ex > -t

n

1 Pn{w, 1)1 ,....., L: Ilk..{W, 1)1
k=1

373
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andfor f3 > -l

G. P. NEVAI

n

Ipiw, -1)1'" L I lkn(W, -1)1.
k=l

Proof By Lemma 3 IPn-l(W, Xkn(W»j '" 1 for Xkn(W) E [c, d] C (-1, 1).
Thus

n

L Ilkn(w, x)j ? A(Yn_l(w)/Yn(w» IPn(w, x)j L An(Xkn(»')).
k~l C<;;"'kn(w),;;;d

By the above-mentioned Szego theorem, limn~x>(Yn_l(w)/Yn(w» = t and by
the Markov-Stieltjes inequalities

L Aixkn(W»)? A .r w(t) dt.
C~Xkn(w)~d C

To prove the second part of the lemma we should show that

for a: > -t and

for f3 > -to Consider the first inequality. Clearly it is enough to prove that

By Lemmas 1 and 3 and Theorem 3 this is equivalent to

L [1 - x~n(w)]a/2-1/4 = ! L [sin lIkn(w)]a-l/2 ~ A.
n O<;;"'kn(v')<l n O<8kn(wl<;;" /2

But we get from Theorem 3 that sin lIkn(w) '" kin.
Thus

n

n L [sin 8kn(wW-1/2 '" n-a- 1/2 L k a-1/2~ 1
O<8kn (w) <;;,,/2 k~l

if a: > -to
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LEMMA 5. Let (X > -I, ~ > -I, 1 > S;;:O o,p > °befixed. Thenfor
every PEPn

I P(1)i P :::;; An2~+2rI P(t)IP (1 - t)~ dt
8

and

I P(-I)IP :::;; An2S+2r 8

I P(t)[p (1 + t)fJ dt.
-1

Proof It is enough to prove the first inequality. Since P =
Ln+l(w(-3/4,-3/41, P) we obtain from (5), (9), and Theorem 3

Pn(w(-3/4,-3/41, Xk,n+l(w l - 3/4,-3/41)) .
X I _ x (W(-3/4,-3/41) ,k,n+1

that is, by Lemmas 1 and 3 and Theorem 3

n+1
I P(1)1 :::;; A IXI~~\~~/n2 I P(x)I n-5/4 k~l [I - Xk,n+1(w<-3/4,-3/4))]-5/8

:::;; A max 2 1 P(x)l.
Ixl";;;1-7/n

Now by Lemma 2

I P(I)IP :(; An2~+2rI P(t)IP (I - t2)~ dt.
-1

Substitute tMP((I - S) t2+ S) here for P(t), where M is a natural integer.
Then

I P(I)[P :(; A(n + M)2~+2r 1 P(t)IP(t - SYMp-1>/2
8

X (l - t)~ dt . (1 - S)(l-MPl/2>-a.

Now, let M be fixed but more than p-1 ,

Proofof Theorem 2. (i) Consider the case when (X > -to Let {epn} be a
sequence of linear functionals from C to R defined by the formula
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By Lemma 4 II f{Jn II ......., log n and using the Banach-Steinhaus theorem we see
that there exists a function.fa E C such that f{Jn(fo) -f+ 0 when n - 00. Thus

(10)

for a function.fa E C and a suitable sequence {nvl. Let j < n and compare
Pj(w, 1) andpn(w, 1). We have by (5)

Since Yn-l(W) C yiw) we obtain from Lemmas 1 and 3, Theorem 3, and (9)
that

n

p/w, 1) ~ APn(w, 1) L [1 - x~n(w)]-1/2
k~l

and again using Theorem 3,

plw, 1) ~ A log npn(w, 1).

From this, (2), and (10),

By the hypothesis of the theorem we have for a suitable c < 1

rI Liw,fo , t)!p(1 - t)a ~ A;
c

that is, by Lemma 5,

ILn(w,fo , 1)1 ~ An2(a+ll/p.

It follows from Lemma 1, (II), and (12) that

Thus
21X + 1 <:: og A + 4 log log n. + 4(a + 1) .

~ log nv p.

Letting v - 00 we obtain P ~ 4(a + l)j(21X + 1).

(11)

(12)
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(ii) Suppose that there exists a weight w such that for every lEe and
integrable v there is a p > 0 with d(Ln(w,f),f)v,1J -+ 0 when n -+ 00. This
means that rI LnCw,f, t)l11 vet) dt ~ A

-1

independently of n. Hence by the Banach-Steinhaus theorem

sup rI Ln(w,j; t)[11 ret) dt ~ A;
VEe -1

Itv!I,~1

that is, II Ln(w,!)I[c ~ A for everyIE C, which is impossible.
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